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Abstract—Shoe-mounted inertial navigation systems, aka
pedestrian dead reckoning or PDR sensors, are being preferred
for pedestrian navigation because of the accuracy offered by
them. Such shoe sensors are, for example, the obvious choice for
real time location systems of first responders. The opensource
platform OpenShoe has reported application of multiple IMUs
in shoe-mounted PDR sensors to enhance noise performance.
In this paper, we present an experimental study of the noise
performance and the operating clocks based power consumption
of multi-IMU platforms. The noise performances of a multi-IMU
system with different combinations of IMUs are studied. It is
observed that four-IMU system is best optimized for cost, area
and power. Experiments with varying operating clocks frequency
are performed on an in-house four-IMU shoe-mounted inertial
navigation module (the Oblu module). Based on the outcome,
power-optimized operating clock frequencies are obtained. Thus
the overall study suggests that by selecting a well-designed
operating point, a multi-IMU system can be made cost, size
and power efficient without practically affecting its superior
positioning performance.

Index Terms—Indoor positioning; IMU; pedestrian dead reck-
oning; ZUPT; Allan variance; clock budgeting; power optimiza-
tion.

I. INTRODUCTION

Indoor pedestrian tracking is a subject of intense research
in the scientific community. Researchers have used various
technologies for tracking indoor pedestrian navigation where
the Global Positioning Satellite (GPS) is highly ineffective [1-
2]. Due to the rapid boom in smart phone market, the prices of
the Micro Electro Mechanical Systems (MEMS) based inertial
sensors have drastically reduced. This reduction in market
price has motivated a number of researchers and practitioners
to use the inertial sensors in indoor navigation applications.
Few shoe-mounted prototypes that are available in the market
are used for indoor navigations without any prior knowledge
of the environment [3-8]. With the recent cost reduction of the
sensor technology, sensor-array based approaches, aka multi-
IMU systems, have appeared to enhance the performance [9-
11]. There are many applications of the multi-IMU devices
apart from indoor tracking, namely in autonomous robotics,
gaming, fitness monitoring, land survey, medical treatment of
movement disorders and workforce monitoring & management
to name a few.

Fig. 1. The Osmium MIMU4444: A massive multi-IMU array based inertial
positioning platform.

The purpose of the paper is to find a suitable operating point
for multi-IMU devices, based on their noise performance with
number of IMUs, to save the cost as well as to reduce the size.
Further, to make the shoe-mounted multi-IMU device more
power efficient by operating the clocks at optimized frequency.

This paper is organized as follows. Section II gives an
overview of the device under test, i.e. the massive multi-
IMU array Osmium MIMU4444 as shown in Fig. 1. Noise
performance analysis of the IMU arrays is presented in Section
III. The clock budgeting based power consumption study is
described in Section IV. Conclusions of the study are drawn
in Section V.

II. DEVICE UNDER TEST

Shoe-mounted inertial navigation devices like Osmium
MIMU4444, contain multiple IMUs. As MEMS sensors based
inertial positioning systems suffer from drift, Zero-velocity
Update (ZUPT) algorithm is used to minimize the accumu-
lation of error [12].

Normal human gait shows a momentary standstill when the
shoe sole comes in contact with ground. ZUPT algorithm
takes advantage of this phase of human gait by detecting
the standstill moment and eliminating any non-zero veloc-
ity measurement done by the shoe-mounted device. So the978-1-5090-6299-7/17/$31.00 c©2017 IEEE



Fig. 2. Block Diagram of Osmium MIMU4444: The massive multi-IMU
array platform contains thirty two IMUs on board. It contains two 4x4 IMU-
arrays placed in well defined layout on either side of the board, and are
mirrored with respect to each other.

MEMS based accelerometers and gyroscopes can be used for
measuring the displacement and heading of each and every
human step and thereby help in human tracking without any
pre-installed infrastructures.

The device under test, shown in Fig. 1, contains thirty
two 9-axis MPU9150 IMUs placed on the either side of
the module. The IMUs contain 3-axis accelerometers and 3-

Fig. 3. PDR with shoe-sensors: PDR is simplified with the shoe-mounted
multi-IMU array. The device starts transmitting location data at every step, on
receiving start command from the application platform. Here dPi and dθi are
displacement and change in orientation at every step. Though a smartphone
is shown as a user’s application platform in the figure, a desktop PC or any
other system could well be configured to run user’s application.

axis gyroscopes and 3-axis magnetometers. It also contains a
pressure sensor. The module has a powerful 32-bits floating
point AT32UC3C micro-controller for onboard data acquisi-
tion and computation required for implementing the ZUPT
algorithm. Other key components of the module include micro-
USB connector for data communication as shown in the block
diagram in Fig. 2 [13]. The module can be programmed using
JTAG programmer.

The module works on the principle of PDR i.e. the process
of calculating one’s position by estimating the direction and
displacement. The device detects steps and gives out the
displacement and change in heading, using ZUPT approach.
The information provided by the device is used to track
the current position based on previous known position. The
information is sent via USB to any application platform where
one can calculate the current position. The operation based on
PDR is shown in Fig. 3 [14].

The device under test is a multi-IMU inertial naviga-
tion system based on the open source OpenShoe project
(www.openshoe.org) [7-8] where the hardware platform as
well as the embedded software is released under the permissive
open source Creative Commons Attribution 4.0 International
Public License.

The 32-IMU array enables data fusion and thereby reduces
independent stochastic errors and improves the navigation
performance. Presence of the on-board floating point controller
significantly enhances the processing capability which allows
IMUs to be simultaneously sampled at maximum allowable
rate and carry out data fusion and navigational computation
inside the device as illustrated in Fig. 4. The device therefore
becomes capable of transmitting low rate PDR data at every
step, over USB interface. The device can easily be attached to
the shoe, to obtain relative coordinates of the tracked path as
PDR data, in the user’s application platform .

III. NOISE PERFORMANCE OF AN IMU ARRAY

The errors in the IMUs are caused by noise sources which
are statistically independent. Many methods for modelling
such noise are developed. The simplest and most used is
the Allan variance time-domain analysis technique. It involves
analysing a sequence of data in the time domain, to measure
frequency stability in oscillators. This method can also be used
to determine the intrinsic noise in a system as a function of
the averaging time. The method is simple to compute and
understand. It is one of the most popular methods today for
identifying and quantifying different noise terms that exist
in any inertial sensor data. The method has been adapted
to characterize random-drift of a variety of devices including
MEMS based IMUs [15].

The Allan deviation (AD) is a direct measurable quantity
which can provide information on the types and magnitude of
various noise terms. It is calculated as

AD =

√√√√ 1

2(n− 1)

n∑
i=1

(aτi+1 − aτi)2



Fig. 4. Data pre-processing flow in Osmium MIMU4444: The sensors data
from the IMUs are compensated with a gain factor ki after calibration. Then,
the average is taken and bias b is added to the averaged data to get the
normalized data. This pre-processed data, after gyroscope’s bias estimation,
is used for navigational computation.

where the data sequence is divided in n bins of length τ and
aτi is the average of each bin.

The results from this method are related to five basic noise
terms appropriate for inertial sensor data. These are quanti-
zation noise, angle random walk, bias instability, rate random
walk, and rate ramp [16]. For MEMS based accelerometers
and gyroscopes, the velocity random walk/angle random walk
and in-run bias stability are important.

The objective of this study is to see how the white noise
and bias instability respond to change in number of IMUs. The
increase in number of IMUs will increase both cost as well as
size of the device. One has to optimize the number of IMUs
based on the noise performance. The Allan variance analysis
is done by selecting 1, 2, 4, 8, 16 and 32 IMUs at a time. The
IMUs are chosen according to Fig. 2 and the corresponding
TABLE I. The normalized fused data, as shown in Fig. 4, are
collected for more than 30,000 seconds with data sampling rate
of 1 kHz, at room temperature. The orientation of the device
during collection of data is such that the resultant acceleration
due to gravity is acting along the negative z-axis.

Multiple sets of normalized data are collected but the
most stable among them are considered for AD computation.
Overlapping AD is computed from the normalized data set.
The AD of the normalized acceleration data along the x-axis
is compared among the 10 different selections of IMUs as

TABLE I
POSITION OF IMUS IN THE DEVICE

No. of IMUs Case IMU#
1 - 0

2
Same side 0,2
Either side 0,1

4
Same side 0,2,4,6
Either side 0,1,2,3

8
Same side 0,2,4,6,8,10,12,14
Either side 0,1,2,3,4,5,6,7

16
Same side 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30
Either side 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

32 - 0 to 31

mentioned below. Similarly the same comparisons are done
for the normalized acceleration data in the y and z axes as
well as for normalized gyroscope data in x, y and z axes. The
comparisons are shown in Fig. 5 and Fig. 6.

The slope of the Allan varinace curves for small values of
averaging time, is almost 1

2 for all the combinations of the
IMUs, which clearly indicates the presence of random walk.
Minima, which is used to determine bias instability values,
can be identified in all the curves. The values of the random
walk and the in-run bias stability for the accelerometers and
the gyroscopes along the x, y and the z axes are measured.
It can be observed from TABLE II that both the values are
low in comparision to some of the commercial off-the shelf
IMUs. The value of acceleration due to gravity g at the place

(a)

(b)

(c)
Fig. 5. Allan variance analysis of various combinations of accelerometers in
(a) x-axis (b) y-axis (c) z-axis. Noise performance improves with increase in
number of IMUs of a multi-IMU system. The combination of IMUs on the
same side of the board, exhibits better noise performance.



(a)

(b)

(c)
Fig. 6. Allan variance analysis of various combinations of gyroscopes in
(a) x-axis (b) y-axis (c) z-axis. Noise performance improves with increase in
number of IMUs of a multi-IMU system. Noise performance along z-axis is
better than that of corresponding combinations of accelerometers.

of experiment, is 9.79019 m/s2. With number of IMUs N, the
drop in noise level of a multi-IMU system is

√
N , as expected

[10]. Based on the measurements, the values of the velocity
random walk and the in-run bias stability of the acceleration
for different selections of IMUs are plotted in Fig. 7 for all the
three orthogonal axes. Similarly the angle random walk and
the in-run bias stability is also plotted for the gyroscopes, and
shown in Fig. 8. For the cases where the number of IMUs
under consideration is 2 or 4 or 8 or 16, the selection of
IMUs can be on the same side or on either side. So in these
kinds of scenarios the selection with better noise performance
considered for the analysis presented in Fig. 7 and Fig. 8.
From Fig. 7(a) and Fig. 8(a) it can be observed that z-axis
shows the worst noise performance while it is comparable for

(a)

(b)
Fig. 7. The variation of the (a) Velocity random walk (b) In-run bias stability
with the number of accelerometers in a multi-IMU system. Noise performance
of the resultant accelerometer improves with increase in accelerometers in a
multi-IMU system.

(a)

(b)
Fig. 8. The variation of the (a) Angle random walk (b) In-run bias stability
with the number of gyroscopes in a multi-IMU system. Noise performance of
the resultant gyroscope improves with increase in gyroscopes in a multi-IMU
system.



TABLE II
COMPARISION OF MIMU4444 AND DIFFERENT COMMERCIAL

OFF-THE-SHELF IMUS.

Device Name Axis Acc RW Acc
IRBS

Gyro
RW

Gyro
IRBS

(m/s/
√
hr) (mg) (◦/

√
hr) (◦/hr)

KVH 1775[17] - 0.070 0.05(1σ) 0.012 0.05(1σ)

MotionPak
II [18]

x 0.0166 0.123 0.512 13.6
y 0.0159 0.116 0.486 11.7
z 0.0161 0.123 0.489 16.8

STIM300
[19]

x 0.050 0.015 0.114 0.32
y 0.050 0.015 0.137 0.25
z 0.052 0.020 0.120 0.46

MIMU4444
1-IMU

x 0.066 0.033 0.395 5.4
y 0.060 0.022 0.424 5.4
z 0.086 0.066 0.458 3.8

MIMU4444
4-IMUs

x 0.042 0.021 0.346 2.3
y 0.042 0.015 0.371 3.1
z 0.060 0.030 0.387 2.4

MIMU4444
32-IMUs

x 0.014 0.010 0.257 1.2
y 0.014 0.006 0.300 1.1
z 0.022 0.012 0.219 1.2

x and y axes. Another important observation is that the noise
performance for same number of IMUs is better for the IMUs
on the same side. The noise performance for 16 IMUs is an
exception, as it does not follow the parabolic nature of the
graph.

Now comparing the noise performance between different
permutations of IMUs, it can be observed that MIMU4444
shows the best noise performance when all the thirty two IMUs
are selected. But choosing thirty two IMUs is not a feasible
idea, considering that such devices are used as a wearable
positioning device. The improvement in noise performance
is almost parabolic with the number of IMUs. For a four-
IMU system, the noise is almost half compared to a single
IMU system, without significant increase in cost and size.
The results of the study led to an improved design of a shoe-
mounted PDR device as depicted in Fig. 9. For easy reference
it will be referred as Oblu (www.oblu.io). This device has an
inbuilt Bluetooth for wireless transmission of PDR data.

IV. OPERATING POINTS FOR POWER PERFORMANCE

Shoe-mounted indoor navigation system has various appli-
cations where the time duration of usage is quite large. For
such applications saving power without any degradation of the
performance becomes very critical. Though there are various
ways of saving power, the scope of this study is limited to
saving power by finding the optimized operating frequencies
of system clock and the I2C clock of the controller and IMUs
interfacing bus respectively.

A. Varying I2C clock and system clock frequencies

The IMUs send data over I2C bus to the controller. The
controller does not offer four inbuilt I2C ports. Therefore,
I2C bit banging method is implemented to use the GPIOs

Fig. 9. Oblu: A four-IMU shoe-mounted ZUPT-aided PDR device. (a) Fully
populated Oblu board (b) Battery-operated and encased Oblu mounted on a
shoe.

of the controller as I2C ports. This way, four sets of I2C
ports are created using controller GPIOs to access all the
four IMUs simultaneously. The controller operates on a system
clock frequency of 64 MHz. We varied its operating frequency
and observed change in power consumption and positioning
performance. Three operating frequencies – 64 MHz, 48 MHz
and 32 MHz – of the system clock are selected. No other
frequency of the system clock was valid because of the
limitations in data communication with an interfacing IC.
The I2C clock frequency was varied between the maximum
allowed 400 kHz and the lowest acceptable frequency limit
such that the total time to read and process sensors data does
not exceed the sampling time of 1 ms. The IMUs are sampled
at fixed frequency of 1 kHz which is also the maximum
allowed sampling rate [20]. Therefore, a new set of IMUs
data is available for processing at every 1 ms. The controller
reads data from the IMUs, performs pre-processing like data
formatting, calibration compensation, data fusion etc. followed
by navigation computation. This has to be done within 1 ms
i.e. before the next set of IMU data is available. The data flow
diagram is shown in Fig. 10.

1) Varying I2C clock frequency: First, the system clock
frequency is fixed at 64 MHz and then the I2C frequency is
slowly reduced from 400 kHz. At each I2C clock frequency,
the power consumption is noted. The change in I2C frequency
affects the I2C communication speed. Any reduction in the I2C
clock frequency increases the time required to read the IMU
data by the controller. The I2C frequency is reduced until the
time required by the controller to perform data reading, pre-
processing and navigational computation just exceeds 1 ms.
Study of the I2C SCL (clock) line at a frequency of 400 kHz
and 244 kHz is shown in Fig. 11. It is observed from Fig.
11 that the time taken by the controller to read the IMU data
are 400 µs and 650 µs at I2C frequency of 400 kHz and 244
kHz respectively. It should be noted that when I2C operates
at 244 kHz, the time needed to complete the whole process of
positioning for each set of data just exceeds 1 ms. Therefore



Fig. 10. The dataflow diagram: Time taken by the controller at each step of
the entire process is indicated. Here tir is the time required to read the IMUs
data, tpp is the time required for preprocessing and tzupt is the time required
to run the ZUPT algorithm by the controller and tidle is the idle system clock
cycles that are available after all the computations are done. Rc, Pc, Zc and
Ic are the clock cycles required for reading IMU data, pre-processing the
data, executing the navigational algorithm and for being idle respectively.

Fig. 11. The IMU data read: The I2C SCL (clock) line indicates the time spent
in reading IMU data (tir), pre-processing (tpp), navigational computation
(tzupt) and unused clock cycles (tidle) at I2C clock frequency of (a) 400
kHz (b) 244 kHz

this is the corner case with no unused clock cycle remaining.
To find the system clock cycle requirement for preprocessing
tpp and for executing the ZUPT algorithm tzupt, the time
required to compute normalized (fused) data is observed. The
time interval between two successive data outputs is observed

at I2C frequencies of 400 kHz and at 200 kHz as shown in Fig.
12(a). At I2C frequency of 200 kHz, The time gap between
two successive outputs exceeds the input sampling time of 1
ms.

2) Varying system clock frequency: The above experiments
are repeated for the system clock frequency of 48 MHz.
It should be noted from TABLE III that at system clock
frequency of 48 MHz, the controller takes 405 µs and 520
µs to read the IMUs data at I2C frequency of 400 kHz
and 308 kHz respectively. At I2C frequency of 308 kHz,
time required for successfully completing all the processes
of navigational algorithm just exceeds 1 ms. Similarly, for
system clock frequency of 32 MHz the total time required
for completing entire process exceeds 1 ms even at 380 kHz,
which is the maximum possible I2C frequency by I2C bit
banging method at 32 MHz.

B. Clock cycle estimation

From Fig. 11(a) the number of clock cycles to read IMU
data Rc at 64 MHz are

Rc = 400× 10−6 × 64× 106 = 25, 600

It is important to note that IMU data read, at the same I2C
frequency, would take different amount of time at different
system clock frequencies because of the use of bit banging
method for generating I2C over controller’s GPIOs.

(a)

(b)
Fig. 12. Estimating pre-processing time: (a) The time interval between two
successive pre-processed datasets at I2C speed (a) 400 kHz and 200 kHz (b)
The I2C SCL (clock) line at 200 kHz. The time gap between two successive
outputs exceeds the input sampling time of 1 ms.



TABLE III
COMPARISION OF POWER CONSUMPTION AT DIFFERENT MODES.

Sys Clk
Freq
(MHz)

I2C
Freq
(kHz)

Power con-
sumption
(mW)

tir

(µs)

tpp+tzupt

(µs)

ttotal

(µs)

64

400 381.85 400 365 765
370 389.71 430 365 795
315 391.42 510 365 875
290 397.84 550 365 915
244 404.52 650 365 1015

48

400 329.76 405 490 895
381 335.62 425 490 915
338 340.71 480 490 970
308 343.55 520 490 1010
240 354.35 680 490 1170

32

380 288.90 410 725 1135
358 291.80 435 725 1160
324 291.21 480 725 1205
314 293.09 500 725 1225
290 295.63 540 725 1265

From Fig. 11(b) it is observed that for system clock fre-
quency of 64 MHz, the total time required for pre-processing
(tpp) and navigational computation (tzupt) is ∼365 µs. There-
fore, the number of system clock cycles (Nc) required are

Nc = 365× 10−6 × 64× 106 = 23, 360

From Fig. 12(b) it can be noted that the time taken for
preprocessing the data (tpp) is 260 µs. Therefore the number
of clock cycles (Pc) required for pre-processing are

Pc = 260× 10−6 × 64× 106 = 16, 640

It was further studied that among 16,640 clock cycles used
for preprocessing, the number of clock cycles used only for
calibration compensation are

Pccc = 35× 10−6 × 64× 106 = 2, 240

The number of system clock cycles (Zc) required for
computing ZUPT algorithm are

Zc = (23, 360− 16, 640) = 6, 720

This also implies that the time required to calculate the ZUPT
algorithm at 64 MHz system clock frequency, is 105 µs. At
I2C clock frequency of 400 kHz, the idle clock cycles (Ic) are

Ic = (1000− 400− 260− 105)× 10−6 × 64× 106 = 15, 040

For the best power performance, the number of idle system
clock cycles must be minimized. It should be noted that a small
number of clock cycles are also utilized for data transmission.

(a)

(b)

(c)
Fig. 13. Tracking results: The screenshot of the footprint as displayed on
Android Application - Xoblu when the tracking experiments were performed
with system clock frequency of (a) 64 MHz (b) 48 MHz (c) 32 MHz. The
results obtained with 64 MHz and 48 MHz system clock frequencies are
accurate but performance degradation is observed at system clock frequency
of 32 MHz

C. Results

The power numbers are observed at different system clock
and I2C clock frequencies, and are presented in TABLE III.

From the TABLE III it can be seen that the power con-
sumption decreases with decrease in system clock frequency.
At operating point (48 MHz, 400 kHz), the power consumption
is 329.76 mW compared to 381.85 mW at (64 MHz, 400 kHz).
It can be seen from TABLE III that almost

Ic@ 48 Mhz = 105× 10−6 × 48× 106 ≈ 5, 000

clock cycles remain unused even after navigational computa-
tion at (48 MHz, 400 kHz). The power consumption at (48
Mhz, 400 kHz) is 13.6% less as compared to (64 MHz, 400
kHz) without any performance degradation.

Positioning experiments using 64 MHz and 48 MHz clock
frequencies are performed and shown in Fig. 13(a) and Fig.
13(b). There is hardly any noticeable difference between the
two. Multiple tracking experiments were conducted using
same device at 64 MHz and 48 MHz system clock frequencies



without any observable difference. The indoor positioning data
sample is collected in a rectangular space of size 5.5×2.4
m. The path is traversed four times. The data is collected
on the companion Android application, Xoblu [21]. After
multiple experiments, it is observed that the performance at
48 MHz consistently matches with that at 64 MHz system
clock frequency. But at clock speed of 32 MHz performance
degradation is observed as shown in Fig. 13(c).

Interestingly the power consumption increases slightly with
reduction in I2C clock frequency. The I2C bus in general
is held high, using pull up resistor, except when the data
transmission takes place. The current flow through pull-up
resistors takes place when the bus is held low. Therefore when
the I2C frequency is lowered, the bus remains low for longer
duration for the given same set of data transfer, which results
in more current flow through the pull- up resistors. As a result
the power consumption increases as the I2C clock frequency
decreases.

V. CONCLUSION

This paper presents a design optimization study of multi-
IMU array based indoor positioning devices, with respect to
noise and power. Superior noise performance of a multi-IMU
system is a key advantage as compared to a single IMU based
positioning system. Presented Allan variance study on varying
number of IMUs of the massive IMU array system, highlights
that the noise in general goes on reducing with increase in
number of IMUs. However one also has to optimize the cost,
size and power efficiency of such systems to make them
suitable for wearable applications. The variation in the noise
with number of IMUs is parabolic in nature. As expected, for a
four-IMU system the noise reduces to almost half as compared
to single IMU system, without much increase in size, cost and
power consumption of the system. This justifies use of four
IMUs in the shoe-mounted inertial navigation system.

We performed the next set of experiments for power opti-
mization, on four-IMU shoe-mounted ZUPT-aided PDR sensor
- Oblu. We selected two predominant clocks of the system
– the controllers main clock which is responsible for almost
all the data processing, and the I2C clock which is used for
reading sensors data from four IMUs. Study is performed
on three possible controller’s clock frequencies – 64 MHz,
48 MHz and 32 MHz. It is noted that ∼14% of the total
power can be saved without any compromise in the positioning
accuracy, by reducing controller’s clock frequency from 64
MHz to 48 MHz. This is due to reduction in idle clock cycles
which are present in case of 64 MHz system clock frequency.
Clock frequency of 32 MHz is ruled out because of the time
required to process input data samples exceeds input sampling
time. Though one may study the possibility of operating at 32
MHz with reduced IMUs sampling rate. A slight increase in
power consumption is observed with increase in I2C frequency
because it takes more time to perform same amount of reading
from the IMUs. Therefore, the highest possible I2C clock
frequency of 400 kHz becomes the obvious choice.

Evolution of a multi-IMU shoe-mounted inertial navigation
system is presented. The superior positioning performance and
enhanced power efficiency enable many critical applications
requiring infra-free indoor positioning. Innovative products
and services around such low-cost PDR sensor would fuel
further big innovations, and unleash its mass market applica-
tions.
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[8] J-O. Nilsson, I. Skog, P. Händel, and K.V.S. Hari, “Foot-mounted INS for
Everybody An Open-source Embedded Implementation”, Proc. 2012
IEEE/ION Position Location and Navigation Symposium (PLANS), pp.
140-145, Myrtle Beach, SC, USA, April 2326, 2012.

[9] J-O. Nilsson and I. Skog, “Inertial Sensor Arrays - A Literature Review”,
2016 European Navigation Conference (ENC), Helsinki, Finland, May 30
June 2, 2016.
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